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Abstract

We consider a phenomenological model for bone remodeling, proposed by Hazelwood et al. [1], which

represents the process through a coupled population equation for basic multicellular units (BMUs) and

a rate equation for microdamage. Its fundamental dependence on empirical data can lead to unbalanced

model terms making any numerical approximations sensitive to implementation error. Thus we propose a

balanced and simplified but equivalent restatement of the model. We show that, in this simpler guise, the

model relates to more complex biologically-based models for bone remodeling, thus motivating a thorough

analysis of its predictions as well as its robustness to modifications. We present a global analysis of the

asymptotic solutions and study the model predictions numerically, with a computational algorithm that

is shown to be stable. We also identify aspects of the model that could be parameterized with simpler

alternatives.

We show that, if the rate of damage accumulation is independent of the damage itself (as in the original

model), the damage will remain bounded in time even when severely over-stressed. To model bone failure

under severe over-stress, we consider an alternative damage accumulation following a Paris law-like micro-

crack dynamics. We show that such power-law damage accumulation does not alter substantially the

outcomes of the under-stressed case; however, it allows for the possibility of irretrievable failure when

the damage repair cannot counteract the growth term.

keywords: bone, remodeling, damage, BMU.
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1 Introduction

Bone is a dynamic tissue that adapts its internal microstructure to its physiological and mechanical envi-
ronment, through a process known as bone remodeling. Bone is continuously renewed and microdamage,
accumulated by fatigue or creep, is continuously repaired. It is commonly accepted that bone remodeling is
carried out by the basic multicellular units (BMUs), which consist of bone resorbing osteoclasts and bone
forming osteoblasts working in concert. After the BMUs are activated, the following sequence of events
occur: resorption of bone tissue for a time interval (the resorption period), a reversal time (the reversal
period), the formation of new bone tissue.

A number of mathematical and computational models for bone remodeling have been proposed. Most of
the earlier models are phenomenological descriptions of the average change of bone porosity or density by
the coordinated activities of osteoclasts and osteoblasts. The recent advances in biologically-based models
[1, 2, 3, 4, 5] have revealed a new phase of modeling for bone remodeling, which considers both bone
cell activities and the mechanical effects. In particular, the coupling between fatigue damage dynamics
(accumulation and removal) and the cell activities during bone remodeling as a function of mechanical
stimulus has yielded fruitful results. We will refer to this class of models as a BMU-MD model. We focus
here on a BMU-MD model proposed by Hazelwood, Martin, Rashid and Rodrigo [1] (referred to as HMRR),
where the effects of the coupling between BMU dynamics and microdamage was first investigated. This
model has been used to study the long-term effects of biphosphonate on the development of trabecular
bone [6]. It has also been used in combination with a finite element code to assess different types of knee
replacement strategies [7].

In Section 2 we restate the model proposed by HMRR. Doing so reveals its essential simple and robust
structure and enables us to produce a mathematical characterization of its behavior; Section 3 presents an
analysis of the equations. We show that the model can be solved algebraically, yielding the asymptotic
outcomes in the long time limit. These steady states provide a global picture of the model outcomes and
constrain the equilibrium values of bone porosity p and microdamage D. From the point of view of numerical
analysis, the model entails a rather extreme range of parameters, making it extremely vulnerable to round-
off error. In the Appendix we employ a stable numerical algorithm, and compare our results with those of
Hazelwood et al. [1].

Our analysis suggests an important way in which the HMRR model can be refined. The HMRR model
used a constant rate of accumulation of damage, which results in an upper bound for bone damage. Ex-
perimental data [8, 9, 10], however, show that repeated large loading continually weakens bone, and if the
load is large enough the bone will eventually fail, i.e. damage becomes unbounded. We modify the damage
accumulation equation to include an accumulation rate reminiscent of the Paris Law from fracture mechanics
(cf. [11]). In Section 4 we show theoretically how this modification changes the outcomes when the bone
is over-stresssed. Section 5 summarizes our results regarding the model analysis and how it is modified by
using an alternative damage equation. In the Appendix we also consider ways in which the model can be
simplified.

2 The BMU-MD Model

The aim of reformulating the model is to cast it in a simpler form, amenable to analysis. Unless otherwise
noted, all choices of parameters, constitutive relations, and empirical functions, are taken directly from
HMRR [1].

2.1 The physical variables

The model focuses on a representative volume of bone that contains BMUs. The external mechanical load
on the representative volume affect the remodeling activities of BMUs, resulting in changes in bone porosity,
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which in turn changes the mechanical response of the bone. This model reduces to a coupled system
of integro-differential equations for the porosity p(t) and the damage D(t). Time t is measured in days.
Porosity, given either as a fraction or as a percentage, represents the fraction of pores within the bone; p = 0
corresponds to dense bone, and p = 1 corresponds to bone of zero density. The damage is defined as the total
crack length per section of area of the bone. The damage is non-negative for all time t. Two intermediate
fields contribute to changes in p and D: a mechamical stimulus Φ, and the activation frequency fa(p, D, t).

The time to fracture resulting from a strain ε = L/(k2E) is given by the relation tf ∝ ε−q, where q > 0
is an empirically-adjusted exponent [9, 8], E is the elastic modulus of the bone, and ε is the strain. The
mechanical stimulus is defined as

Φ :=
1
tf

= RL εq, (1)

where the constant RL is the loading rate ([12]).
For the elastic modulus E, HMRR suggest the following polynomial fit to data, entirely in terms of the

porosity p:
E(p) = 105

(
8.83p6 − 29.9p5 + 39.9p4 − 26.4p3 + 9.08p2 − 1.68p + 0.237

)
. (2)

Figure 1a shows E as a function of P . A composite of the elastic modulus appears in [13] and we note
that the plotted polynomial fits well with the data for low porosity but differs greatly from the data at high
porosity values. Figure 1c shows how a lower degree polynomial approximation compares to this high degree
interpolant expression in (2), and how the modulus could be modified to decrease to zero in the high porosity
regime. (Detailed discussion is in Appendix.)

We denote the empirically-derived normalized specific surface area as S(p). A fit from data leads to

S(p) =
1

SN

(
28.8p5 − 101.0p4 + 134.0p3 − 93.9p2 + 32.2p

)
, (3)

where SN normalizes the specific surface area to 1 and thus S(p) is non-dimensional (see [14]). In Figure 1b
we provide a plot of S(p).
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Figure 1: (a) Elastic modulus E(p), (b) normalized specific area S(p), and (c) hyperthetical elastic modulus,
as a function of p. See [13] for details on the fit to data.

The BMU activation frequency fa(D, p) is given by

fa(D, p) = S(p) (fa(disuse)(p) + fa(damage)(D)). (4)

The part associated with disuse is defined as

fa(disuse)(p) =

{
fa(max)

1+c1 ec2Φ(p) if Φ < Φ0;
0 otherwise,

(5)

where Φ0 is an empirical value estimated from cyclic strain levels needed to maintain cortical bone mass at
equilibrium. The damage component is

fa(damage)(D) =
fa(max)

1 + c3 ec4D
,

where c4 < 0. The ci are numerical constants, the values of which (and the connection with the constants in
[1]) may be inferred from Table 1. (The Appendix includes an analysis of fa and how it can be simplified.)
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2.2 The coupled delay equations

For time t ≥ 0, the BMU-MD equations for the porosity p and the damage D are

dp

dt
= A

(
NR(p, D, t) − NF (p, D, t)

)
(6)

dD

dt
= KDΦ − FsA D fa(p, D), (7)

Where KD is a constant of proportionality (to be discussed further in Section 2.4), and Fs = 5 mm−2 is
an empirical factor associated with microcrack surface area (see HMRR paper for details). There are three
time intervals associated with the BMU activity: The resorption period TR, the inactive period TI , and the
refilling period TF . In the above equation, we have incorporated the temporal periods for both resorption
and refilling via the averages NR, NF (see (10) and (11)).The factor,

A =
{

A0 if Φ ≥ Φ0;
1
2A0(1 + Φ/Φ0) otherwise,

where A0 is a given constant. It appears in every term on the right hand side of (6)-(7). The associated
population resorption and refilling densities NR and NF at time t are given by

NR =
∫ t

t−TR

fa(s) ds NF =
∫ t−(TR+TI)

t−(TR+TI+TF )

fa(s) ds.

One must interpret the integrals for small times when their lower limits are negative. That is, as with any
system of delay equations, one must prescribe initial data for p(t) and D(t) on the first full cycle of the BMU
unit, i.e. for t ∈ [0, TR + TI + TF ]: Thus, from the point of view of dynamics, the model retains ambiguity.
During this period of time the bone model exhibits transient behavior. Moreover, it is not clear what NR

and NF should be for the initial period. For large times the differential equations make sense with time
averages of NR and NF , i.e., NR = NR/TR and NF = NF /TF . The ambiguity for all times disappears, of
course, if prehistory data is an equilibrium solution.

To simplify the notation, let

I(a, b) ≡
∫ b

a

fa(p(s), D(s)) ds.

It seems natural to define NR as:

NR(p, D, t) =
{

I[0, t], if t < TR;
I[t− TR, t], otherwise,

(8)

For NF it is less clear. A simple choice (which we believe was used in obtaining numerical results in HMRR)
is to set it to zero until t > TR + TI + TF (until the end of the ”first” refilling period). Hence

NF (p, D, t) =
{

0 if t < TR + TI + TF ;
I[t− (TR + TI + TF ), t− (TR + TI)] otherwise,

(9)

and we define the time averages as

NR(p, D, t) =

{
I[0,t]

t , if t < TR;
I[t−TR,t]

TR
, otherwise,

(10)

and

NF (p, D, t) =

{
0 if t < TR + TI + TF ;
I[t−(TR+TI+TF ),t−(TR+TI)]

TF
otherwise.

(11)
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2.3 Parameters: defined, given and derived

A number of parameters are derived and others given by observations or constraints. Table 1 summarizes
all of these and indicates whether they are defined, given, or derived. The distinction between defined,
given and derived parameters is important: Owing to the large discrepancy in the size of the parameters,
disregard for how these parameters are used can lead to serious loss-of-precision errors, even on double
precision machines. In what follows we use the HMRR paper as a guide with regard to parameters that are
’given’ (e.g., experimental/observational in origin), and derived and defined, which are either created or a
consequence of constraints.

The mechanical stimulus Φ0 is a given parameter. Its value is what is required to maintain cortical
bone mass in equilibrium and has been assumed to correspond to an average person who experiences about
RL = 3000 cpd of lower extremity loading. The initial damage D0 is taken to be the average crack density
for a 40 year old man and thus taken to be given and exact here. In HMRR this value was obtained from
measurements. On the other hand, p0 is a derived parameter. It is obtained by solving for the root p0 of
the following equation:

Φ(p0) = Φ0 = 3000
(

891.6
100E(p0)

)q

. (12)

The value of q will have a bearing on the value of po. Nevertheless, in HMRR, they used the same p0 regardless
of the value of q — see Figure 7 of HMRR. In summary, the initial value of D is given: D(t = 0) = D0; the
initial value of p is computed: p(t = 0) = p0; the values of Φ0 and fa0 are given.

We define the Damage Rate Coefficient KD as follows. The value of the mechanical stimulus Φ0 maintains
a cortical bone mass in equilibrium and is consistent with a value of 891.6 N for the load, and q = 4, p = p0

in (12). Thus at equilibrium Ḋ = 0 in (7). Hence,

KD =
Fs, D0 S(p0)fa0 A

Φ0
, (13)

where, in accordance to (5), we include the factor S(p0) in this calculation.1

3 Analysis of the BMU-MD Model

For a given load L, the steady states are found by setting the time derivatives of p and D to zero in the
evolution equations. These steady state solutions, in fact, turn out to describe the stable asymptotic behavior
of the model: as we will show later on, the damage equation, as originally conceived by HMRR, produces
only bounded solutions; the population dynamics equation for the BMU’s is bounded, by construction.

We obtain the steady states by setting the time derivatives in (6) and (7) to zero. By construction, (6)
enforces the constraint 0 ≤ p ≤ 1. We require that D ≥ 0. For t sufficiently large, we set p(t) = p̂ and
D(t) = D̂, both constant. With these, equation (6) is trivially satisfied, since

QR NR(p̂, D̂, t) = QF NF (p̂, D̂, t).

Furthermore, Φ(p̂, D̂, t) = Φ̂, A(p̂) = Â, E(p) = Ê are all constant. Since D̂ is constant then its time
derivative is zero. The steady values of (p̂, D̂) are obtained by solving

KDΦ(p̂, D̂)− FsAD̂fa(p̂, D̂) = 0. (14)

Thus values of p̂ and D̂ that satisfy (14) represent the fixed points of (6) and (7).

Steady states, and the effect of KD:
1HMRR did not include the factor S(p0), and hence used kD = KD/S(p0) as their damage rate coefficient. To make the

difference plain, KD ≈ 5.57× 104 mm/mm2, kD ≈ 1.85× 105 mm/mm2. We use KD unless otherwise noted.
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For a load L = 891.6 N Figure 2(a) shows the fixed point curves and how these are modified when either
we use the correct value KD or the value employed by HMRR, kD. Clearly, there are significant differences
in the outcome of numerical simulations, particularly for high porosity. Figure 2(b) and (c) show the fixed
point curves for the under-stressed and over-stresssed cases, respectively. The damage apparently plays a
very limited role in the under-stressed case, for low porosity. For larger values of the porosity there is a
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Figure 2: Fixed or stationary points of the model are depicted here as a line in the (p, D) plane. (a) For
L = 891.6 N , we compare the predictions using KD and kD. (b) Under-Stressed L = 255N (c) over-stresssed
L = 1665N . In (b) and (c) we use KD.

significant jump in the porosity, D reaches unphysical values in this case. However, a decrease in the damage
for the largest p is notably odd and can be entirely attributed to the downstream effects of Φ for large p,
which in turn is being affected by the increasing value of E for the largest values of p. The over-stresssed case
is characterized by commensurate effects on p and D. However, there is a sensible and dynamic interplay
between porosity and damage for low values of both.

Bounded solutions for the over-stresssed case:
Since E(p) > 0, as prescribed by HMRR, fa(D, p) > 0 except when p = 0 –due to S(p)– and Φ(p) is

bounded and positive, we may thus write (7) as

dD

dt
≤ g1 − g2 D,

where g1, g2 are positive and do not depend on D, which implies

D(t) ≤ C1(g1, g2), (15)

where C1 is a positive constant that depends on the parameters that constitute the g’s. Hence, the model
does not produce solutions with super linear growth, as those found numerically by HMRR. A caveat must
be added, however: if the activation frequency were to become 0 then g2 = 0 and blowup would be possible,
but this outcome is outside of the realm of physical possibility.

The nature of oscillations in the model:
It is not unreasonable to expect oscillations in the model solution: It is composed of integro-differential

equations, which can be recast as delay equations, which can potentially have oscillating solutions. Figures
4, 5 and 8 of HMRR show oscillating solutions. Are the oscillations related to the activation frequency, as
claimed by HMRR? Are the oscillations, seen in the numerical results of HMRR, numerical artifices due
to either p drifting outside of its range, or D becoming negative? Can the model indeed have sustained
oscillations for a solution?

We perturb the steady solutions (p(t), D(t)) = (p̂, D̂) + (δp, δD) and substitute these into (6) and (7).
We get dδp

dt = 0. The damage equation leads to

dδD

dt
= −κ1δp− κ2δD,
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where the real part of κi ≥ 0, i = 1, 2, and are never strictly imaginary. Therefore, if oscillations appear,
they would decay exponentially; sustained oscillations are not possible. If p and D admit oscillations it is
easy to see that the activation frequency will also have oscillations. However, since only decaying oscillations
are admissible it is not possible (for a fixed set of parameters) to have sustained oscillations due to the
activation frequency.

4 The BMU-MD Model, Revisited

In the previous section we focused on characterizing certain aspects of the model, as it was formulated in
HMRR. Among other things we found that the model has bounded damage for any level of applied stress,
that the model solutions are very sensitive to some of the parameterizations, and that the behavior of the
model when p approaches 1 is unphysical. Here we consider how the BMU-MD model dynamics are modified
by replacing the damage growth term in the damage equation.

4.1 A Relative Damage Rate Equation

The original HRMM model was shown to yield, for p sufficiently far from 1, comparatively reasonable results
when the bone is under-stressed. However, there is bounded growth of the damage, irrespective of the
load, for non-vanishing values of the activation frequency. The expectation, however, is that over-stresssed
conditions should yield a phenomenology consistent with the experiments reported by Cotton, Pattin and
others [9, 8, 10].

In [10] (see also [9]) they perform an empirical fit of the creep strain of cortical bone subjected to strains.
The bone specimens come from cadavers and are thus not subject to damage repair. The data shows that
the cyclic strain in the bone, over some threshold, leads to progressive damage. It may eventually lead
to catastrophic levels, provided the load is sufficiently high and/or the sample is subjected to stresses for
long enough periods of time. Furthermore, the data shows that the history of bone degradation depends on
whether the stresses are compressive or tensile.

The damage rate equation, as given by (7), is only partially relative to the damage via the second term
on the right hand side. Moreover, as demonstrated in the previous section, even when the bone is over-
stresssed it is not possible to obtain unmitigated growth in time for the damage. In particular, the modelling
philosophy of HMRR for the damage accumulation term, i.e., the term KDΦ, is consistent with this form
for the creep strain. Obviously, in this case D ≤ g1t, where g1 > 0 is an upperbound to KDΦ; Φ, as we
know, is bounded. The damage thus grows at most linearly.

If we resort to the fundamentals of fracture mechanics for the bone damage development, an alternative
model for the permanent strain, reminiscent of Paris Law (see [11]), relates the crack growth rate under a
fatigue stress regime to the stress intensity factor as a power law – below the threshold crack size, the crack
will not grow. This leads to a damage accumulation, in terms of a function F , of the form

D ∝=
1

F ((tf − t))
, (16)

for D > Dth, some threshold damage, and D = Dth otherwise. This form presumes no damage repair. Here,
tf would depend on L and E, perhaps as suggested by (1). We will show that (16) would be qualitatively
similar to the data presented in [8] in their Figure 3, i.e., a period of accumulating damage followed by
catastrophic failure, given repeated loading above some threshold, and can be made to fit the data studied
by Pattin and Collaborators [10], thus offering an alternative and perhaps simpler description of the damage
accumulation term. We propose a power-law dependence for the relative damage D ≡ D/D0 as an alternative
to the logarithmic fit suggested in [10]. A secondary aim is to show that replacing the damage growth term in
(7) by a Paris-law leads to significant increases in the resulting damage when the bone is over-stresssed. We
expect, however, that in the under-stressed case, the behavior of the model to be not significantly different
from the model in its original inception, for short times.

7



The proposed alternative damage equation is

dD

dt
= cm

(
L

E(p)

)q

D
m

D − FsA Dfa(p, D), (17)

for D ≥ Dth, where cm ≥ 0, and m ≥ 1. HMRR suggest that there should be an equilibrium damage state,
in which case cm is tuned to obtain dD/dt = 0, say, for the conditions of load L = 891.6 N, E(p0), fa0,
and D = D0. The exponent m is a new parameter in the problem whose numerical value in the example
calculations will be taken to be 1; the reason for this choice of m will become apparent in what follows.

A threshold for the relative damage to grow exponentially and irretrievably is given by

D >

(
FsAfaEq

cmLq

)1/m

.

This is the case when the damage accumulation is more prominent than the damage repair term. From this
expression we see that increasing the load L lowers the threshold. Moreover, the larger the load, or the
exponent m, the sooner the instability occurs. Blowup leads to full decoupling of the activation frequency
on the damage, i.e., fa(damage) = fa(max) and thus no feedback is possible in the porosity, other than
a readjustment in the porosity. We thus expect the coupled model to exhibit irretrievable growth in the
damage with no change on the porosity, beyond an adjustment in its value shortly after the blowup. Whether
this is the correct behavior of under-stressed bone is beyond the scope of this work.

Figure 3 shows the critical points in the (p, D) plane for m = 1. The case corresponding to L = 891.6
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Figure 3: Porosity and damage fixed points, using (17) with m = 1 for the damage equation. Computed
using L = 891.6 N, and the over-stresssed case with L = 1665 N.

N is a tuned threshold for the model (the cm is set with this load). Interestingly, steady solutions exist
for porosities higher than about 0.0442, which is the value of p0. For loads higher than L = 891.6, steady
solutions are defined for all values of p and D. These higher load cases generate curves that would be located
below the L = 891.6 curve. The quick decrease in the damage for high porosity in the over-stresssed case
(where we take L = 1665), is related to the anomalous increase in E for high values of p (see Figure 1a, also
comments in the following subsection).

Figure 4 show the porosity, damage, and activation frequency as a function of time with the new dynamics.
In the under-stressed cases, the second term in the damage equation dominates. Figure 4a shows several
cases with low loads. These figures show qualitative similarity with the under-stressed case of the original
model (shown in Figure 5, which appears in Appendix C).

Figure 4b shows the over-stresssed case, as a function of the load L. As expected in over-stresssed
conditions, provided enough time passes, the damage can grow exceedingly large, leading to bone failure.

Garćıa-Aznar et al [3] adopted a form for the damage accumulation term, consistent with the fit suggested
in [10]. Moreover, they defined two different damage formation modes, one for tension and one for compres-
sion. The rate in both cases is essentially exponential in the damage itself. Our goal here is to suggest that
the power law and the exponential form for the damage accumulation term in the damage rate equation are
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Figure 4: Porosity, damage, and activation frequency as a function of time, using (17) with m = 1. (a)
Under-stressed. (b) Over-stressed.

equivalent. To this end, we ignore the damage repair term in the damage rate equation. Furthermore, we
will opt for using their definition of the damage: Let D := 1 − E/E0, where E0 corresponds to a reference
value of the elastic modulus of the undamaged bone. In Garćıa-Aznar this damage is described by

D ∝ b1 − b2[ln(b3 − cg t/tf )]n, (18)

where b1, b2, and cf are constants tuned to agree with results in [10]. Moreover, under tensile stress n = 1/2,
b1 = 1, b2 > 0, 0 < b3 < 1; under compression, n = 1, b1 = 0, b2 > 0, b3 = 1. In contrast, in terms of the
power law damage equation prediction for D, ignoring damage repair, and with D = D −D0, is of the form

D ∝ b4

(1− cf t/tf )1/m
−D0, (19)

where b4 can be written in terms of m, tf , and cf .
Both forms can be made to pass through D = 0 at t = 0 with proper tuning of the parameters. Both

exhibit divergent behavior, at tfb3/cg and tf/cf , respectively. The values of the parameters in the exponential
damage accumulation term appear in [3], in both the compressive and the tensile cases. They are chosen to
match the fit suggested by [10]. Assuming that (18) is exact in its representation of the damage accumulation
due to stresses one can write a series about t = 0 of (18) and (19) and term by term comparison shows that
for both tensile and compressive forces m = 1, and that D0 = b4 is the compressive case and D0 6= b4 for
the tensile case and both of these parameters can be fixed uniquely for a reasonable fit. This implies that
both the exponential and the power law fits are equally capable of fitting the experimental data. (Of some
mathematical interest, writing a series expansion near the singular point, a Laurent expansion for the powers
of the logarithm function, shows that the leading order behavior requires a complex representation. This is
obviously not the case for the power law representation).

Formally, the power law is appealing in its simplicity and its generality. It leads to a bone damage
rate equation that is considerably simpler to analyze mathematically. Moreover, since it is inspired by a
Paris-law for damage of materials, it is presumably possible then to relate certain bone material properties
to an extensive materials literature related to fatigue of materials under repetitive use.

5 Conclusions

Restating the BMU-MD model proposed by HMRR in a balanced and concise way lead to a set of equations
amenable to simple mathematical analysis. We made the simplifications considering that a practical model
would also be stable numerically; given the extreme spatio-temporal scales of its parameters, the numerical
simulations of the equations were vulnerable to serious numerical loss-of-precision errors.
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Analysis of the steady states of the model yielded global behavior of the solutions, given a load L; ambi-
guity for times shorter than the full remodeling cycle means that the model has to run from an equilibrium
point for a full cycle before making changes in its parameters. Once the bone parameters are determined
the only remaining dynamic parameter is the load. Furthermore, knowing the global solutions it was also
possible to suggest phenomenological simplifications of the model that lead to the same qualitative behavior.
The empirical fit of HMRR of the Young’s modulus was found to be problematic for large values of porosity:
the Young’s modulus was found to be finite and nonzero for porosity equal to 1, and further, to be an
increasing function in the neighborhood of high porosity. This has a bearing on the activation frequency as
well as on the damage-forming term in the damage equation in the original model. When we replaced the
Young’s modulus with a monotonically decreasing function we found that the ”mechanical stimulus” Φ has
extremely limited dynamics, leading to problems in the damage equation, as originally conceived. This prob-
lem is obviated in the power-law alternative formulation of the damage-causing term as it does not depend
on the mechanical stimulus. Furthermore, our analysis presents arguments for considerably simplifying the
material properties, as well as parts of the activation frequency function. The term associated with disuse
in the activation frequency was also shown to be well approximated by a considerably simpler expression,
without loss of quantitative and qualitative fidelity.

The damage equation, in the HMRR formulation, was found to have bounded solutions for finite values
of the parameters, regardless of the level of the stress on the bone. A power-law alternative of the model
was suggested here as a dynamic for the damage. This model is inspired by the bone data analyzed in
[8] from experiments that show creep strain behavior and possible failure under loading. We also found
that making the damage rate relative to the damage itself leads to significant changes in the damage in
the over-stresssed case. Moreover our calculations show that in the original model the dependence of the
porosity on the damage might be too weak, particularly in the over-stresssed case, where it is possible to get
unrealistic values in the damage with little change in the porosity. Excluding exponential growth or decay
a balance in the damage equation is obviously possible. Since the coupling between porosity and damage
is weak the stability of the system is nearly entirely controlled by the damage equation and is thus most
always a trivially unstable fixed point.

Restating the BMU-MD model allows one to compare with the recent model of Garćıa-Aznar et al [3].
This latter phenomenological model is capable of modeling stress fractures, among other things, and it has
been shown to have significant predictive potential. When the model by Garćıa-Aznar et al. is stripped of
some phenomenological complexities it becomes clear that it shares some common characteristics with the
BMU-MD model: this is because it uses a population dynamics equation for the BMU’s and an equation for
the damage rate that involves a formation and a repair term. We opted for a power-law damage production
term and Garćıa-Aznar et al for an exponential damage production term. We show that either of these will
give qualitatively good fits of the damage data from experiments and that both models will exhibit similar
behavior. In view of this the model of Garćıa-Aznar et al is shown to have important similarities to the
HMRR model. There are important distinctions between the models as well: We show in this study that the
HMRR specification of the bone properties in terms of porosity alone leads to weak coupling in the steady
solutions of the porosity and the damage under fixed loads. The material properties of the bone, i.e. the
effective surface area and the Young’s modulus, are entirely fitted to data in terms of porosity in the HMRR
specification of the BMU-MD model, whereas it is specified in terms of the damage and porosity in the
Garćıa-Aznar et al. model. In [3] the authors opted for a different model for the Young’s modulus by taking
into account the loss of stiffness due to damage and with this change they obtained a richer phenomenology, it
strongly suggests that the improvements in the HMRR formulation of the BMU-MD model will be obtained
by focusing on the specification of the material properties of the bone.
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Model Parameters

Table 1 lists all of the parameters used in the model.

Table 1: Model constants and other parameters defined, given, or derived.

symbol value units definition
c1 - 1 e−kbkc

c2 - days−1 kb

c3 - 1 fa(max)−fa0

fa0
e−krfa(max)

c4 - mm kr

D0
fa(max)

c5 - mm/mm2 kD

cp 1.90 see (17)
KD - mm/mm2 S(p0)kD

kD - mm/mm2 see (13)
A0 2.84× 10−2 mm2 -

fa(max) 0.5 mm−2 days−1 -
m - 1 see (17)
TR 24 days -
TI 8 days -
TF 64 days -
RL 3000 days−1 -
kb 6.5 × 1010 days−1 -
kc 9.4 × 10−11 days -
kr −1.6 mm2 days -
p0 - 1 see (12)
D0 0.0366 mm/mm2 -
Φ0 1.875× 10−10 days−1 -
fa0 0.0067 # BMU’s/mm2/day -
Fs 5 mm−2 see (13)

Numerical Methodology

The extreme disparity in size of variables and parameters in the model can easily lead to numerical loss-
of-precision errors. The integro-differential equations were solved using a variable order stiff solver of type
’backward difference formula’ (see [15]). The tolerances were set to machine epsilon. The solver was used
inside an adaptive trapezoidal quadrature for the integrals.

The code properly converged when the adaptive trapezoidal integrator was set to fixed time steps. The
test was made as follows: we replaced the integrand with a function which we could integrate analytically.
The code was kept intact otherwise. We then compared the relative error with the expectation that the
quadrature scheme should converge at a rate of ∆t2, where ∆t is the time step. We found that e.g., for
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∆t = 1.0, the relative error is 10−3.0793; for ∆t = 0.25, the relative error is 10−4.2833; for ∆t = 0.0625, the
relative error is 10−7.4874. A polynomial fit of the logarithm of the relative error in terms of the logarithm of
the time step yielded a slope of 2, thus confirming that we have convergence at the correct rate. Separately we
tested the BDF portion which advances the differential equation. The scheme was adaptive so we confirmed
that the tolerances were met post-facto and that the error was well below the trapezoidal integrator. Hence,
the local error was controlled by the trapezoidal quadrature and thus the overall solution was order 2 with
respect to fixed time step.

Numerical Results and Comparison with HMRR

In this section we present our numerical findings and compare them with those of HMRR on their BMU-MD
model. We have shown that our results are consistent with the analysis and that we use convergent codes.
Since the numerical simulations were instrumental in the HMRR paper to explain or illustrate the model’s
characteristics (and thus also critical in setting forth a path of improvement in the modeling effort) it is
useful to highlight the differences in the results. Here we are simulating the model as derived by HMRR,
without changes to the damage equation or the material properties of the bone. We emphasize here that
differences are not due to the adoption of a different model, but rather, due to our implementation of a stable
numerical algorithm and the careful calculation of wide ranging parameters. As we will see, our numerical
results are consistent with the analytical estimates presented in this study. In what follows we will use the
value of the proportionality constant in (8) which includes the factor of S(p0), i.e. KD, rather than kd.
(i) Effect of Under-Stressing

In the case of under-stressing, Figure 5 shows qualitative agreement with HMRR. (We show only time 600
days in order to show more clearly the initial stages of the evolution. Plotting to 2000 days shows nothing
that cannot be inferred in the truncated solutions.). Quantitative differences are primarily due to the use of
KD versus kD. We find that the ringing in the HMRR results is spurious numerical artifacts. Contrary to
HMRR, the damage plot in Figure 5 does not show any unbounded growth.
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Figure 5: Porosity, damage, and activation frequency for the under-stressed case, as a function of the load
L. This corresponds to Figure 4 of HMRR.

As we mentioned in the Section 3 it is not possible to obtain sustained oscillations in the dynamic variables
p and D. Oscillations, however, are not ruled out, and in fact are usually expected in delay equations. The
ringing that appears in the HMRR results for dynamic variables in the transient period, however, are mostly
a numerical artifact. Longer-period oscillations in the HMRR results related with the dynamic variables,
not associated with changing the parameters TI , TR, and TF , were most likely induced by allowing p and D

to go out of range (inducing complex eigenvalues in the linearized equations).
(ii) Effect of Changing fa(max)
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For the activation frequency the situation is portrayed in Figure 5, for L = 222.9N as an example.
The main difference between our results and HMRR is quantitative: in HMRR the oscillations are more
pronounced. We found that for loads in the 240-400 N range, approximately, there is a significant increase
in decaying oscillations in fa. In fact the oscillations disappear well outside of this load range.

The primary effect of changing fa(max) is to modify the fixed point curves. Figure 6 shows the long-time
solutions for a variety of fa(max) and under the action of two different loads. Changing fa(max) has little
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Figure 6: The effect of increasing fa(max) on the fixed point curves. (a) L = 445N , (b) L = 891.6N . (c)
L = 1655N . Note, the case L = 1655 and fa(max) = 0.5 is illustrated in Figure 2(b) and is outside of the
plot range chosen to make these figures.

effect for small p and D, however, for p sufficiently large, increasing fa(max) decreases the damage. This is
all in contrast to the HMRR results wherein increases in oscillations were ascribed to changes in fa(max).

Lastly, we notes that a change that does lead to decaying oscillations is changes in the parameters TR,
TI , and TF - this can be seen both numerically and via the spectrum of the linear operator associated with
the delay equations. However, these parameters are set by nature.
(iii) Effect of Over-stressing

Figure 6 of HMRR shows that overloading (L = 1655N) leads to exponentially growing porosity and
activation frequency. Figure 7 of HMRR shows that q = 8 leads to similar exponential growth in porosity
and damage. In accordance with our boundedness estimate, neither the porosity nor the damage will blow up
–for porosities that are reasonable, i.e. not very close to 1, where the model is flawed due to the polynomial
approximation of the Young’s modulus –. Figure 7 shows the results of over-stressing. We observe no
super-linear growth, in agreement with the estimates in Section 3.
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Figure 7: Porosity and activation frequency for the over-stressed case, as a function of the load L. This
corresponds to Figure 6 of HMRR

(iv) Effect of Changing q

Finally, a few comments on varying q. Low values of q (q = 1, 2, 3) give negative activation frequencies
and hence are not physically-meaningful; q > 4 also produces a negative activation frequency at large time.
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Neither of these are noted in Figure 7 of the HMRR paper. Also HMRR obtained blowup for q = 8, which
is most likely a numerical artifact.

Modeling Simplifications and Alternative Parameterization

Simplifying the Activation Frequency: One simplification is related to exploiting the limited range
of porosity associated with specific bone types: for example in [16] it was reported that the porosity of
Haversian canals is less than 10% for average people below 50 years of age, and at worst around 30% for
females over 80 years old. As HMRR uses parameters (Φ0 and q and fa0) derived for Haversian canals or
cortical bones, there must be a limited range of porosity (e.g. p < .3) where the model is valid. Considerable
simplification is possible in the expression for the activation frequency, the result of which changes in an
imperceptible manner the results from both a qualitative and quantitative point of view. For example, one
can replace (5) by the expression

fa(disuse) =

{
fa(max)

1+c1
if Φ < Φ0;

0 otherwise,
(20)

This replacement can be justified as follows: the upper bound on the relative magnitude of the derivative of
fa(disuse) with respect to Φ in the range [0,Φ0] is no greater than 10−3.

Bone Material Parameterizations: E(p) and S(p) have an important role to play in the damage
equation. There are two issues here: (i) sensitivity in the modeling of the modulus and the specific area,
(ii) E(p), as prescribed by HMRR, has nonsensical characteristics for high values of p, namely the Young’s
modulus increases in the neighborhood of p close to 1.

The choice of a high order polynomial fit for E(p) and S(p) makes model simulations very sensitive to
numerical error. We examined the effects of simplifying the empirical functions E(p) and S(p) (Figure 1a,b).
The curves are not very intricate, suggesting that a lower oder polynominal fit would be suitable. It is easy to
see that the relative sensitivity |(∂Φ/∂E)/Φ| for the range of values of E given in Figure 1a is at most 10−3.
We confirmed our claim by using a second degree polynomial expressions for both (2) and (3) and found that
the results changed very minimally compared to using the higher degree polynomial counterparts, especially
with regard to final steady states. Here we used the higher order polynomial expressions to generate data to
be interpolated. Piece-wise cubic splines do an even better job at following the higher order polynomial fit
for S(p) and E(p) with a marginal increase in numerical sensitivity. In conclusion, a much lower polynomial
fit would be adequate in interpolating the experimental data, and would be preferred from a computational
point of view.

From a modeling standpoint, the more important issue is the validity of the interpolated expression for
E(p). In [14] data is presented over the full range of p and hence a fit for S(p) (which is more sensibly fitted
with lower order splines) should be adequate for modelling S(p), especially for high p. The modulus E(p),
on the other hand, is questionably characterized in the immediate neighborhood of p = 1.

We can consider a constitutive relation for E as in Figure 1c, where E decrease monotomically to p = 1.
Since the modification to our original E(p) is for high values of p, the function fa(disuse) does not change in
any way and thus the activation frequency remains the same. Therefore there is no change to the p evolution
equation. The main modification will be seen in the term KDΦ of the original damage equation (8) wherein
the mechanical stimulus becomes unbounded as p approaches 1. The original BMU-MD model will thus
experience catastrophic rates of damage, which may be a sensible thing to expect. Next we examine what
happens to the damage equation for the middle to high range of p: if the damage equation has a Paris-law
type damage-forming term the mechanical stimulus does not appear explicitly, however the ratio L/E(p)
appears and thus one can obtain irretrievable damage if either the bone is stressed repeatedly, provided it is
done so aggressively, or the material is too sensitive to damage because its Young’s modulus is too low.
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